Search results for "correlation spectroscopy"
showing 10 items of 39 documents
Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance.
2020
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero ($<\!\!1$~$\mu$G) magnetic field using a \Rb vapor-cell magnetometer. At zero field the spectrum of ethanol appears as a mixture of \carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra. We also identify and observe the zero-field equivalent of a double-quantum transition in ${}^{13}$C$_2$-acetic acid, and show that such transitions are of use in spectral assignment. Two-dimensional spectroscopy further improves the high resolution attained in zero-field NMR since selection rules on the coherence-transfer pathways allow for the separation of otherwise overlappi…
Protein diffusion in mammalian cell cytoplasm.
2011
We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribut…
Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source
2003
Local fluorescence probes based on CdSe semiconductor nanocrystals were prepared and tested by recording scanning near-field optical microscopy (SNOM) images of calibration samples and fluorescence resonance energy transfer SNOM (FRET SNOM) images of acceptor dye molecules inhomogeneously deposited onto a glass substrate. Thousands of nanocrystals contribute to the signal when this probe is used as a local fluorescence source while only tens of those (the most apical) are involved in imaging for the FRET SNOM operation mode. The dip-coating method used to make the probe enables diminishing the number of active fluorescent nanocrystals easily. Prospects to realize FRET SNOM based on a single…
Time resolved confocal luminescence investigations on reverse proton exchange Nd : LiNbO3 channel waveguides
2009
In this work we report on the time and spatial resolved fluorescence of Neodymium ions in LiNbO(3) channel waveguides fabricated by Reverse Proton Exchange. The analysis of the fluorescence decay curves obtained with a sub-micrometric resolution has evidenced the presence of a relevant fluorescence quenching inside the channel waveguide. From the comparison between diffusion simulations and the spatial dependence of the (4)F(3/2) fluorescence decay rate we have concluded that the observed fluorescence quenching can be unequivocally related to the presence of H+ ions in the LiNbO(3) lattice. Nevertheless, it turns out that Reverse Proton Exchange guarantees a fluorescence quenching level sig…
The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation.
2014
Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vi…
Wave-Vector Dependence of the Dynamics in Supercooled Metallic Liquids
2020
Physical review letters 125(5), 055701 (2020). doi:10.1103/PhysRevLett.125.055701
<title>Time-resolved fluorescence study of interaction of the monoclonal anticoproporphyrin antibodies and (Pt-)coproporphyrin</title>
1995
Mechanisms of ligand binding by monoclonal anti-coproporphyrin antibodies are studied by steady-state and time-resolved fluorescence spectroscopy by use of a picosecond laser system. The antibodies quench the coproporphyrin (CP) fluorescence, but the CP fluorescence spectra show a strong shift of maxima at high concentrations of antibodies (Ab) or their Fab fragment. This can be explained by a special type of Ab or Fab dimerization. Fluorescence decays of CP are measured at different concentrations of Ab and different pH values. The following deconvolution procedure based on the non-linear least squares method reveals a two- exponential character of the fluorescence decay. Data obtained by …
Molecular and structural characterization of fluorescent human parvovirus B19 virus-like particles
2005
Although sharing a T = 1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site of B19, fluorescent virus-like particles (fVLPs) of B19 were developed. The enhanced green fluorescent protein (EGFP) was inserted at the N-terminus of the structural protein VP2 and assembly of fVLPs from this fusion protein was obtained. Electron microscopy revealed that these fluorescent protein complexes were very similar in size when compared to wild-type B19 virus. Further, fluorescence cor…
The oxidation state of a protein observed molecole-by-molecule.
2005
We report the observation of the redox state of the blue copper protein azurin on the single-molecule level. The fluorescence of a small fluorophore attached to the protein is modulated by the change in absorption of the copper center via fluorescence resonance energy transfer (FRET). In our model system, the fluorescence label Cy5 was coupled to azurin from Pseudomonas aeruginosa via cysteine K27C. The Cy5 fluorescence was partially quenched by the absorption of the copper center of azurin in its oxidized state. In the reduced state, absorption is negligible, and thus no quenching occurs. We report on single-molecule measurements, both in solution by using fluorescence correlation spectros…
Effect of the supramolecular interactions on the nanostructure of halloysite/biopolymer hybrids: A comprehensive study by SANS, fluorescence correlat…
2020
The structural properties of halloysite/biopolymer aqueous mixtures were firstly investigated by means of combining different techniques, including small-angle neutron scattering (SANS), electric birefringence (EBR) and fluorescence correlation spectroscopy (FCS). Among the biopolymers, non-ionic hydroxypropylcellulose and polyelectrolytes (anionic alginate and cationic chitosan) were selected. On this basis, the specific supramolecular interactions were correlated to the structural behavior of the halloysite/biopolymer mixtures. SANS data were analyzed in order to investigate the influence of the biopolymer adsorption on the halloysite gyration radius. In addition, a morphological descript…